The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices.
نویسندگان
چکیده
This paper describes the rheological properties of silated hydroxypropylmethylcellulose (HPMC-Si) used in biomaterials domain as a three-dimensional synthetic matrix for tissue engineering. The HPMC-Si is an HPMC grafted with 3-glycidoxypropyltrimethoxysilane (GPTMS). HPMC and HPMC-Si were studied. It is shown that although silanization reduces the hydrodynamic volume in dilute solution, it does not affect significantly the rheological behavior of the concentrated solutions. The HPMC-Si viscous solution (pH 12.8) cross-links by decreasing the pH using an acid buffer, since HPMC-Si solution transforms into an elastic state. The kinetics of cross-linking and final elastic properties is influenced by several parameters such as polymer concentration, pH and temperature. pH and temperature play an important role in the silanol condensation, mainly responsible for network formation. The study of the gelation process revealed the dependence of the final concentration of HPMC-Si hydrogel on cross-linking kinetics and viscoelastic properties. The percolation theory was applied to determine gel point and to discuss the dependence of storage (G') and loss (G'') moduli on frequency. Results showed that both G' and G'' exhibit a power-law behavior with an exponent (0.68) which extends over the entire frequency range. This method is the only one to characterize the time where a liquid viscous phase shifts to hydrogel with elastic properties. In this case it was about 23 min for a final pH of 7.4.
منابع مشابه
Gelation studies of a cellulose-based biohydrogel: the influence of pH, temperature and sterilization.
The present paper investigates the rheological properties of silated hydroxypropylmethylcellulose (Si-HPMC) biohydrogel used for biomaterials and tissue engineering applications. The general property of this modified cellulose ether is the occurrence of self-hardening due to silanol condensation subsequent to a decrease in pH (from 12.4 to nearly 7.4). The behavior of unsterilized and sterilize...
متن کاملA New In-Situ Gel Formulation of Itraconazole for Vaginal Administration
In this paper, mucoadhesive in-situ gel with poloxamer and hydroxypropylmethylcellulose formulations of itraconazole were prepared for vaginal application. In addition, rheological, mechanical and mucoadhesive properties and syringeability of the formulations were characterized. The mixtures of Poloxamer 407 and 188 with two different types of hydroxypropylmethylcellulose were used as polymers ...
متن کاملEffect of Composition on Release of Aroma Compounds
The effect of oleic acid (5 and 10% v/v) and xanthan gum (0.5 and 1% wt) on partitioning and retention of ethyl acetate and diacetyl from two matrices with a different composition was investigated by applying static head space gas chromatography. Two matrices with different composition have been developed: one containing carbohydrates (xanthan gum) and in the second one, called co...
متن کاملEffect of Micro Glass Flake on Morphological and Rheological Behaviour of Epoxy Vinyl Ester Composite Coatings
In the present work, attempts were made to investigate the reinforcement and treatment effect of GF on morphological and rheological behaviour of GF/epoxy vinyl ester composites. GF was incorporated into epoxy vinyl ester resin by sonication, and mechanical agitation. Rheological and morphological properties were studied as a function of particle treatment and size distributions. The dispersion...
متن کاملEffect of Reclaimed rubber Modification on the Rheological Properties and Rutting Resistance of Asphalt Binders
In this paper, the effect of reclaimed rubber modification on the rheological characteristics of asphalt binders is studied. Reclaimed rubber with the extent of 12, 16 and 20 is added to the neat asphalt binder and then shear complex modulus is obtained for neat and modified asphalt binder via Dynamic Shear Rheometer (DSR) test. Using Christensen-Anderson- Marasteanu (CAM) model, master curves ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 29 5 شماره
صفحات -
تاریخ انتشار 2008